Uniqueness of a Generalized Solution for a One-Dimensional Thermal Explosion Model of a Compressible Micropolar Real Gas

Autor: Angela Bašić-Šiško, Ivan Dražić
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 5, p 717 (2024)
Druh dokumentu: article
ISSN: 12050717
2227-7390
DOI: 10.3390/math12050717
Popis: In this paper, we analyze a quasi-linear parabolic initial-boundary problem describing the thermal explosion of a compressible micropolar real gas in one spatial dimension. The model contains five variables, mass density, velocity, microrotation, temperature, and the mass fraction of unburned fuel, while the associated problem contains homogeneous boundary conditions. The aim of this work is to prove the uniqueness theorem of the generalized solution for the mentioned initial-boundary problem. The uniqueness of the solution, together with the proven existence of the solution, makes the described initial-boundary problem theoretically consistent, which provides a basis for the development of numerical methods and the engineering application of the model.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje