Refining hemodynamic correction in in vivo wide-field fluorescent imaging through linear regression analysis

Autor: Jing Li, Fan Yang, Kathleen Zhang, Shiqiang Wu, James Niemeyer, Mingrui Zhao, Peijuan Luo, Nan Li, Rongxin Li, Dan Li, Weihong Lin, Jyun-you Liou, Theodore H. Schwartz, Hongtao Ma
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: NeuroImage, Vol 299, Iss , Pp 120816- (2024)
Druh dokumentu: article
ISSN: 1095-9572
DOI: 10.1016/j.neuroimage.2024.120816
Popis: Accurate interpretation of in vivo wide-field fluorescent imaging (WFFI) data requires precise separation of raw fluorescence signals into neural and hemodynamic components. The classical Beer-Lambert law-based approach, which uses concurrent 530-nm illumination to estimate relative changes in cerebral blood volume (CBV), fails to account for the scattering and reflection of 530-nm photons from non-neuronal components leading to biased estimates of CBV changes and subsequent misrepresentation of neural activity. This study introduces a novel linear regression approach designed to overcome this limitation. This correction provides a more reliable representation of CBV changes and neural activity in fluorescence data. Our method is validated across multiple datasets, demonstrating its superiority over the classical approach.
Databáze: Directory of Open Access Journals