Autor: |
Daniel Kim, Andy Tran, Hani Jieun Kim, Yingxin Lin, Jean Yee Hwa Yang, Pengyi Yang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
npj Systems Biology and Applications, Vol 9, Iss 1, Pp 1-13 (2023) |
Druh dokumentu: |
article |
ISSN: |
2056-7189 |
DOI: |
10.1038/s41540-023-00312-6 |
Popis: |
Abstract Inferring gene regulatory networks (GRNs) is a fundamental challenge in biology that aims to unravel the complex relationships between genes and their regulators. Deciphering these networks plays a critical role in understanding the underlying regulatory crosstalk that drives many cellular processes and diseases. Recent advances in sequencing technology have led to the development of state-of-the-art GRN inference methods that exploit matched single-cell multi-omic data. By employing diverse mathematical and statistical methodologies, these methods aim to reconstruct more comprehensive and precise gene regulatory networks. In this review, we give a brief overview on the statistical and methodological foundations commonly used in GRN inference methods. We then compare and contrast the latest state-of-the-art GRN inference methods for single-cell matched multi-omics data, and discuss their assumptions, limitations and opportunities. Finally, we discuss the challenges and future directions that hold promise for further advancements in this rapidly developing field. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|