Kallikrein‐1 Blockade Inhibits Aortic Expansion in a Mouse Model and Reduces Prostaglandin E2 Secretion From Human Aortic Aneurysm Explants

Autor: Corey S. Moran, Erik Biros, Smriti M. Krishna, Susan K. Morton, Daniel J. Sexton, Jonathan Golledge
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 10, Iss 5 (2021)
Druh dokumentu: article
ISSN: 2047-9980
DOI: 10.1161/JAHA.120.019372
Popis: Background Abdominal aortic aneurysm (AAA) is an important cause of mortality in older adults. The kinin B2 receptor agonist, bradykinin, has been implicated in AAA pathogenesis through promoting inflammation. Bradykinin is generated from high‐ and low‐molecular‐weight kininogen by the serine protease kallikrein‐1. The aims of this study were first to examine the effect of neutralizing kallikrein‐1 on AAA development in a mouse model and second to test how blocking kallikrein‐1 affected cyclooxygenase‐2 and prostaglandin E2 in human AAA explants. Methods and Results Neutralization of kallikrein‐1 in apolipoprotein E‐deficient (ApoE−/−) mice via administration of a blocking antibody inhibited suprarenal aorta expansion in response to angiotensin (Ang) II infusion. Kallikrein‐1 neutralization decreased suprarenal aorta concentrations of bradykinin and prostaglandin E2 and reduced cyclooxygenase‐2 activity. Kallikrein‐1 neutralization also decreased protein kinase B and extracellular signal‐regulated kinase 1/2 phosphorylation and reduced levels of active matrix metalloproteinase 2 and matrix metalloproteinase 9. Kallikrein‐1 blocking antibody reduced levels of cyclooxygenase‐2 and secretion of prostaglandin E2 and active matrix metalloproteinase 2 and matrix metalloproteinase 9 from human AAA explants and vascular smooth muscle cells exposed to activated neutrophils. Conclusions These findings suggest that kallikrein‐1 neutralization could be a treatment target for AAA.
Databáze: Directory of Open Access Journals