Evaluation of Heuristics for Taken’s Theorem Hyper-Parameters Optimization in Time Series Forecasting Tasks

Autor: Rodrigo Hernandez-Mazariegos, Jose Ortiz-Bejar, Jesus Ortiz-Bejar
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Engineering Proceedings, Vol 39, Iss 1, p 71 (2023)
Druh dokumentu: article
ISSN: 2673-4591
DOI: 10.3390/engproc2023039071
Popis: This study compares three methods for optimizing the hyper-parameters m (embedding dimension) and τ (time delay) from Taken’s Theorem for time-series forecasting to train a Support Vector Regression system (SVR). Firstly, we use a method which utilizes Mutual Information for optimizing τ and a technique referred to as “Dimension Congruence” to optimize m. Secondly, we employ a grid search and random search, combined with a cross-validation scheme, to optimize m and τ hyper-parameters. Lastly, various real-world time series are used to analyze the three proposed strategies.
Databáze: Directory of Open Access Journals