Structure and enumeration of $(3+1)$-free posets (extended abstract)

Autor: Mathieu Guay-Paquet, Alejandro H. Morales, Eric Rowland
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AS,..., Iss Proceedings (2013)
Druh dokumentu: article
ISSN: 1365-8050
DOI: 10.46298/dmtcs.12809
Popis: A poset is $(3+1)$-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets are the subject of the $(3+1)$-free conjecture of Stanley and Stembridge. Recently, Lewis and Zhang have enumerated $\textit{graded}$ $(3+1)$-free posets, but until now the general enumeration problem has remained open. We enumerate all $(3+1)$-free posets by giving a decomposition into bipartite graphs, and obtain generating functions for $(3+1)$-free posets with labelled or unlabelled vertices.
Databáze: Directory of Open Access Journals