О гипотезе Цербо на группах Ли с левоинвариантной лоренцевой метрикой

Autor: Виталий Владимирович Балащенко, Павел Николаевич Клепиков, Евгений Дмитриевич Родионов, Олеся Павловна Хромова
Jazyk: English<br />Russian
Rok vydání: 2022
Předmět:
Zdroj: Известия Алтайского государственного университета, Iss 1(123), Pp 79-82 (2022)
Druh dokumentu: article
ISSN: 1561-9443
1561-9451
DOI: 10.14258/izvasu(2022)1-12
Popis: К числу многообразий с ограничениями на тензорные поля относятся многообразия Эйнштейна, эйнштейново-подобные многообразия, конформно плоские многообразия и ряд других важных классов многообразий. Изучению таких многообразий посвящены работы многих математиков, что отражено в монографиях А. Бессе, М. Берже, М.-Д. Цао, М. Вана. Одним из естественных обобщений метрик Эйнштейна являются солитоны Риччи. Если риманово многообразие является группой Ли, то говорят об инвариантных солитонах Риччи. Наиболее подробно инвариантные солитоны Риччи изучались в случае унимодулярных групп Ли с левоинваринтной римановой метрикой и в случае малой размерности. Так, Л. Цербо доказал, что на унимодулярных группах Ли с левоинвариантной римановой метрикой и связностью Леви-Чивиты все инвариантные солитоны Риччи тривиальны. В неунимодулярном случае аналогичный результат до размерности четыре был получен П.Н. Клепиковым и Д.Н. Оскорбиным. В работе изучаются инвариантные солитоны Риччи на трехмерных унимодулярных группах Ли с лоренцевой метрикой. Результаты исследования показывают, что унимодулярные группы Ли с левоинваринтной лоренцевой метрикой допускают инвариантные солитоны Риччи, отличные от тривиальных. В работе получена полная классификация инвариантных солитонов Риччи на трехмерных унимодулярных группах Ли с левоинвариантной лоренцевой метрикой.
Databáze: Directory of Open Access Journals