Taxonomy of Asteroids From the Legacy Survey of Space and Time Using Neural Networks

Autor: A. Penttilä, G. Fedorets, K. Muinonen
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Frontiers in Astronomy and Space Sciences, Vol 9 (2022)
Druh dokumentu: article
ISSN: 2296-987X
86252208
DOI: 10.3389/fspas.2022.816268
Popis: The Legacy Survey of Space and Time (LSST) is one of the ongoing or future surveys, together with the Gaia and Euclid missions, which will produce a wealth of spectrophotometric observations of asteroids. This article shows how deep learning techniques with neural networks can be used to classify the upcoming observations, particularly from LSST, into the Bus-DeMeo taxonomic system. We report here a success ratio in classification up to 90.1% with a reduced set of Bus-DeMeo types for simulated observations using the LSST photometric filters. The scope of this work is to introduce tools to link future observations into existing Bus-DeMeo taxonomy.
Databáze: Directory of Open Access Journals