Taxonomy of Asteroids From the Legacy Survey of Space and Time Using Neural Networks
Autor: | A. Penttilä, G. Fedorets, K. Muinonen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Frontiers in Astronomy and Space Sciences, Vol 9 (2022) |
Druh dokumentu: | article |
ISSN: | 2296-987X 86252208 |
DOI: | 10.3389/fspas.2022.816268 |
Popis: | The Legacy Survey of Space and Time (LSST) is one of the ongoing or future surveys, together with the Gaia and Euclid missions, which will produce a wealth of spectrophotometric observations of asteroids. This article shows how deep learning techniques with neural networks can be used to classify the upcoming observations, particularly from LSST, into the Bus-DeMeo taxonomic system. We report here a success ratio in classification up to 90.1% with a reduced set of Bus-DeMeo types for simulated observations using the LSST photometric filters. The scope of this work is to introduce tools to link future observations into existing Bus-DeMeo taxonomy. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |