The base of warped product submanifolds of Sasakian space forms characterized by differential equations

Autor: Akram Ali, Ravi P. Agrawal, Fatemah Mofarreh, Nadia Alluhaibi
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-11 (2021)
Druh dokumentu: article
ISSN: 1687-1847
09059806
DOI: 10.1186/s13662-021-03230-1
Popis: Abstract In the present paper, we find some characterization theorems. Under certain pinching conditions on the warping function satisfying some differential equation, we show that the base of warped product submanifolds of a Sasakian space form M ˜ 2 m + 1 ( ϵ ) $\widetilde{M}^{2m+1}(\epsilon )$ is isometric either to a Euclidean space R n $\mathbb{R}^{n}$ or a warped product of a complete manifold N and the Euclidean line R $\mathbb{R}$ .
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje