Autor: |
Huajuan Huang, Hao Wu, Xiuxi Wei, Yongquan Zhou |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Biomimetics, Vol 9, Iss 1, p 3 (2023) |
Druh dokumentu: |
article |
ISSN: |
2313-7673 |
DOI: |
10.3390/biomimetics9010003 |
Popis: |
Clustering is an unsupervised learning method. Density Peak Clustering (DPC), a density-based algorithm, intuitively determines the number of clusters and identifies clusters of arbitrary shapes. However, it cannot function effectively without the correct parameter, referred to as the cutoff distance (dc). The traditional DPC algorithm exhibits noticeable shortcomings in the initial setting of dc when confronted with different datasets, necessitating manual readjustment. To solve this defect, we propose a new algorithm where we integrate DPC with the Black Widow Optimization Algorithm (BWOA), named Black Widow Density Peaks Clustering (BWDPC), to automatically optimize dc for maximizing accuracy, achieving automatic determination of dc. In the experiment, BWDPC is used to compare with three other algorithms on six synthetic data and six University of California Irvine (UCI) datasets. The results demonstrate that the proposed BWDPC algorithm more accurately identifies density peak points (cluster centers). Moreover, BWDPC achieves superior clustering results. Therefore, BWDPC represents an effective improvement over DPC. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|