Autor: |
Neža Brezovec, Nika Kojc, Andreja Erman, Matjaž Hladnik, Jošt Stergar, Matija Milanič, Matija Tomšič, Saša Čučnik, Snežna Sodin-Šemrl, Martina Perše, Katja Lakota |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Biomedicines, Vol 10, Iss 11, p 2726 (2022) |
Druh dokumentu: |
article |
ISSN: |
2227-9059 |
DOI: |
10.3390/biomedicines10112726 |
Popis: |
Understanding the tissue changes and molecular mechanisms of preclinical models is essential for creating an optimal experimental design for credible translation into clinics. In our study, a chlorhexidine (CHX)-induced mouse model of peritoneal fibrosis was used to analyze histological and molecular/cellular alterations induced by 1 and 3 weeks of intraperitoneal CHX application. CHX treatment for 1 week already caused injury, degradation, and loss of mesothelial cells, resulting in local inflammation, with the most severe structural changes occurring in the peritoneum around the ventral parts of the abdominal wall. The local inflammatory response in the abdominal wall showed no prominent differences between 1 and 3 weeks. We observed an increase in polymorphonuclear cells in the blood but no evidence of systemic inflammation as measured by serum levels of serum amyloid A and interleukin-6. CHX-induced fibrosis in the abdominal wall was more pronounced after 3 weeks, but the gene expression of fibrotic markers did not change over time. Complement system molecules were strongly expressed in the abdominal wall of CHX-treated mice. To conclude, both histological and molecular changes were already present in week 1, allowing examination at the onset of fibrosis. This is crucial information for refining further experiments and limiting the amount of unnecessary animal suffering. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|