Autor: |
Szames E., Ammar K., Tomatis D., Martinez J.M. |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
EPJ Web of Conferences, Vol 247, p 06029 (2021) |
Druh dokumentu: |
article |
ISSN: |
2100-014X |
DOI: |
10.1051/epjconf/202124706029 |
Popis: |
This work deals with the modeling of homogenized few-group cross sections by Artificial Neural Networks (ANN). A comprehensive sensitivity study on data normalization, network architectures and training hyper-parameters specifically for Deep and Shallow Feed Forward ANN is presented. The optimal models in terms of reduction in the library size and training time are compared to multi-linear interpolation on a Cartesian grid. The use case is provided by the OECD-NEA Burn-up Credit Criticality Benchmark [1]. The Pytorch [2] machine learning framework is used. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|