FEW-GROUP CROSS SECTIONS MODELING BY ARTIFICIAL NEURAL NETWORKS

Autor: Szames E., Ammar K., Tomatis D., Martinez J.M.
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: EPJ Web of Conferences, Vol 247, p 06029 (2021)
Druh dokumentu: article
ISSN: 2100-014X
DOI: 10.1051/epjconf/202124706029
Popis: This work deals with the modeling of homogenized few-group cross sections by Artificial Neural Networks (ANN). A comprehensive sensitivity study on data normalization, network architectures and training hyper-parameters specifically for Deep and Shallow Feed Forward ANN is presented. The optimal models in terms of reduction in the library size and training time are compared to multi-linear interpolation on a Cartesian grid. The use case is provided by the OECD-NEA Burn-up Credit Criticality Benchmark [1]. The Pytorch [2] machine learning framework is used.
Databáze: Directory of Open Access Journals