Autor: |
Teodora Surdea-Blaga, Gheorghe Sebestyen, Zoltan Czako, Anca Hangan, Dan Lucian Dumitrascu, Abdulrahman Ismaiel, Liliana David, Imre Zsigmond, Giuseppe Chiarioni, Edoardo Savarino, Daniel Corneliu Leucuta, Stefan Lucian Popa |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Sensors, Vol 22, Iss 14, p 5227 (2022) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s22145227 |
Popis: |
The goal of this paper is to provide a Machine Learning-based solution that can be utilized to automate the Chicago Classification algorithm, the state-of-the-art scheme for esophageal motility disease identification. First, the photos were preprocessed by locating the area of interest—the precise instant of swallowing. After resizing and rescaling the photos, they were utilized as input for the Deep Learning models. The InceptionV3 Deep Learning model was used to identify the precise class of the IRP. We used the DenseNet201 CNN architecture to classify the images into 5 different classes of swallowing disorders. Finally, we combined the results of the two trained ML models to automate the Chicago Classification algorithm. With this solution we obtained a top-1 accuracy and f1-score of 86% with no human intervention, automating the whole flow, from image preprocessing until Chicago classification and diagnosis. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|