A bifurcation-type theorem for the positive solutions of a nonlinear Neumann problem with concave and convex terms
Autor: | Dimitrie Kravvaritis, Nikolaus S. Papageorgiou, George Smyrlis |
---|---|
Jazyk: | English<br />French<br />Italian |
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Le Matematiche, Vol 65, Iss 2, Pp 69-78 (2010) |
Druh dokumentu: | article |
ISSN: | 0373-3505 2037-5298 |
Popis: | We consider a nonlinear elliptic Neumann problem driven by the p-Laplacian with a reaction that involves the combined effects of a “concave” and of a “convex” terms. The convex term (p-superlinear term) need not satisfy the Ambrosetti-Rabinowitz condition. Employing variational methods based on the critical point theory together with truncation techniques, we prove a bifurcation type theorem for the equation. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |