Well-posedness of Cauchy problem of fractional drift diffusion system in non-critical spaces with power-law nonlinearity

Autor: Gu Caihong, Tang Yanbin
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 385-399 (2024)
Druh dokumentu: article
ISSN: 2191-950X
2024-0023
DOI: 10.1515/anona-2024-0023
Popis: In this article, we consider the global and local well-posedness of the mild solutions to the Cauchy problem of fractional drift diffusion system with higher-order nonlinearity. The main difficulty comes from the higher-order nonlinearity. Instead of the convention that people always focus on the properties of the solution in critical spaces, here we are interested in non-critical spaces such as supercritical Sobolev spaces and subcritical Lebesgue spaces. For the initial data in these non-critical spaces, using the properties of fractional heat semigroup and the classical Hardy-Littlewood-Sobolev inequality, we obtain the existence and uniqueness of the mild solution, together with the decaying rate estimates in terms of time variable.
Databáze: Directory of Open Access Journals