Autor: |
Arslan Umer, Faroha Liaqat, Azhar Mahmood |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Polymers, Vol 12, Iss 2, p 353 (2020) |
Druh dokumentu: |
article |
ISSN: |
2073-4360 |
DOI: |
10.3390/polym12020353 |
Popis: |
This research endeavor aimed to develop thin film blends of polypyrrole (PPy) and poly (styrene-isoprene-styrene) (SIS) with MoO3 as a nanofiller for improved mechanical and electrical properties to widen its scope in the field of mechatronics. This study reports blends of polypyrrole (PPy) and poly (styrene-isoprene-styrene) (SIS) tri-block copolymer showing improved mechanical and electrical attributes while employing MoO3 nanobelts as nanofillers that additionally improves the abovementioned properties in the ensuing nanocomposites. The synthesis of PPy/SIS blends and MoO3/PPy/SIS nanocomposites was well corroborated with XRD, SEM, FTIR, and EDS analysis. Successful blending of PPy was yielded up to 15 w/w% PPy in SIS, as beyond this self-agglomeration of PPy was observed. The results showed a remarkable increase in the conductivity of insulating SIS copolymer from 1.5 × 10−6.1 to 0.343 Scm−1 and tensile strength up to 8.5 MPa with the 15 w/w% PPy/SIS blend. A further enhancement of the properties was recorded by embedding MoO3 nanobelts with varying concentrations of the nanofillers into 15 w/w% PPy/SIS blends. The mechanical strength of the polymeric nanocomposites was enhanced up to 11.4 MPa with an increase in conductivity up to 1.51 Scm−1 for 3 w/w% MoO3/PPy-SIS blends. The resultant product exhibited good potential for electro-mechanical dual applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|