Artificial Intelligence and Machine Learning in Cancer Research: A Systematic and Thematic Analysis of the Top 100 Cited Articles Indexed in Scopus Database
Autor: | Ibrahim H. Musa, Lukman O. Afolabi, Ibrahim Zamit, Taha H. Musa, Hassan H. Musa, Andrew Tassang, Tosin Y. Akintunde, Wei Li |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Cancer Control, Vol 29 (2022) |
Druh dokumentu: | article |
ISSN: | 1073-2748 10732748 |
DOI: | 10.1177/10732748221095946 |
Popis: | Introduction Cancer is a major public health problem and a global leading cause of death where the screening, diagnosis, prediction, survival estimation, and treatment of cancer and control measures are still a major challenge. The rise of Artificial Intelligence (AI) and Machine Learning (ML) techniques and their applications in various fields have brought immense value in providing insights into advancement in support of cancer control. Methods A systematic and thematic analysis was performed on the Scopus database to identify the top 100 cited articles in cancer research. Data were analyzed using RStudio and VOSviewer.Var1.6.6. Results The top 100 articles in AI and ML in cancer received a 33 920 citation score with a range of 108 to 5758 times. Doi Kunio from the USA was the most cited author with total number of citations (TNC = 663). Out of 43 contributed countries, 30% of the top 100 cited articles originated from the USA, and 10% originated from China. Among the 57 peer-reviewed journals, the “Expert Systems with Application” published 8% of the total articles. The results were presented in highlight technological advancement through AI and ML via the widespread use of Artificial Neural Network (ANNs), Deep Learning or machine learning techniques, Mammography-based Model, Convolutional Neural Networks (SC-CNN), and text mining techniques in the prediction, diagnosis, and prevention of various types of cancers towards cancer control. Conclusions This bibliometric study provides detailed overview of the most cited empirical evidence in AI and ML adoption in cancer research that could efficiently help in designing future research. The innovations guarantee greater speed by using AI and ML in the detection and control of cancer to improve patient experience. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |