Autor: |
Kuo-Yang Lai, Shuan Yang, Tung-Chang Tsai, I-An Yao, Chiu-Lien Yang, Chih-Ching Chang, Hsueh-Shih Chen |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nanomaterials, Vol 12, Iss 15, p 2683 (2022) |
Druh dokumentu: |
article |
ISSN: |
2079-4991 |
DOI: |
10.3390/nano12152683 |
Popis: |
An electroluminescent quantum-dot light-emitting diode (QLED) device and a micro QLED device array with a top-emitting structure were demonstrated in this study. The QLED device was fabricated in the normal structure of [ITO/Ag/ITO anode]/PEDOT:PSS/PVK/QDs/[ZnO nanoparticles]/Ag/MoO3, in which the semi-transparent MoO3-capped Ag cathode and the reflective ITO/metal/ITO (IMI) anode were designed to form an optical microcavity. Compared with conventional bottom-emitting QLED, the microcavity-based top-emitting QLED possessed enhanced optical properties, e.g., ~500% luminance, ~300% current efficiency, and a narrower bandwidth. A 1.49 inch micro QLED panel with 86,400 top-emitting QLED devices in two different sizes (17 × 78 μm2 and 74 × 40.5 μm2) on a low-temperature polysilicon (LTPS) backplane was also fabricated, demonstrating the top-emitting QLED with microcavity as a promising structure in future micro display applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|