Synergistic effects of nano curcumin mediated photodynamic inactivation and nano-silver@colistin against Pseudomonas aeruginosa biofilms

Autor: Masoud Azimzadeh, Grazia Greco, Abbas Farmani, Maryam Pourhajibagher, Amir Taherkhani, Mohammad Yousef Alikhani, Abbas Bahador
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Photodiagnosis and Photodynamic Therapy, Vol 45, Iss , Pp 103971- (2024)
Druh dokumentu: article
ISSN: 1572-1000
DOI: 10.1016/j.pdpdt.2024.103971
Popis: Background: Patients with burn injuries colonized by multidrug-resistant Pseudomonas aeruginosa face increased mortality risk. The efficacy of colistin, a last-resort treatment, is declining as resistance levels rise. P. aeruginosa's robust biofilm exacerbates antibiotic resistance. Photodynamic Inactivation (PDI) shows promise in fighting biofilm. Materials and methods: Nano curcumin (nCur) particles were synthesized, and their chemical characteristics were determined using zeta potential (ZP), dynamic light scattering analysis (DLS), energy-dispersive X-ray (EDX) analysis, and fourier transform infrared (FTIR). We conducted an MTT assay to assess the cytotoxicity of nCur-mediated PDI in combination with nanosilver colistin. The fractional biofilm inhibitory concentration (FBIC) of two P. aeruginosa clinical isolates and P. aeruginosa ATCC 27853 during nCur-mediated PDI@AgNPs@CL was determined using a 3-dimensional (3-D) checkerboard assay. To study the effect of nCur-mediated PDI@AgNPs@CL on lasI, lasR, rhlI, rhlR, pelA, and pslA gene expression, Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was conducted at each isolate's FBIC. The impact of treatments was also investigated using scanning electron microscopy (SEM). Results: The ZP and mean DLS values of the nCur were 10.3 mV and 402.6 ± 24.6 nm, respectively. The distinct functional groups of nCur corresponded with the peaks of FTIR absorption. Moreover, the EDX analysis showed the ratios of different metals in nCur. Cell viability percentages of nCur-mediated PDI@AgNPs@CL at FBIC concentrations of clinical isolates Nos. 30, 354, and P. aeruginosa ATCC 27853 were 91.36 %, 83.20 %, and 92.48 %, respectively. nCur-mediated PDI@AgNPs@CL treatment showed synergistic effects in clinical isolates and P. aeruginosa ATCC 27853 in a 3-D checkerboard assay. All six of the investigated genes showed down-regulation after nCur-mediated PDI@AgNPs@CL treatment. The most suppressed gene during nCur-mediated PDI@AgNPs@CL treatment was the rhlR gene (-11.9-fold) of P. aeruginosa ATCC 27853. The SEM micrographs further proved the connecting cement reduction and biofilm mass mitigation following nCur-mediated PDI@AgNPs@CL treatments. Conclusions: The combined effect of nCur-mediated PDI and AgNPs@CL synergistically reduce the formation of biofilm in P. aeruginosa. This may be attributable to the suppression of the genes responsible for regulating the production of biofilms.
Databáze: Directory of Open Access Journals