Lagrangian for Circuits with Higher-Order Elements

Autor: Zdenek Biolek, Dalibor Biolek, Viera Biolkova
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Entropy, Vol 21, Iss 11, p 1059 (2019)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e21111059
Popis: The necessary and sufficient conditions of the validity of Hamilton’s variational principle for circuits consisting of (α,β) elements from Chua’s periodical table are derived. It is shown that the principle holds if and only if all the circuit elements lie on the so-called Σ-diagonal with a constant sum of the indices α and β. In this case, the Lagrangian is the sum of the state functions of the elements of the L or +R types minus the sum of the state functions of the elements of the C or −R types. The equations of motion generated by this Lagrangian are always of even-order. If all the elements are linear, the equations of motion contain only even-order derivatives of the independent variable. Conclusions are illustrated on an example of the synthesis of the Pais−Uhlenbeck oscillator via the elements from Chua’s table.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje