Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian
Autor: | Serena Dipierro, Giampiero Palatucci, Enrico Valdinoci |
---|---|
Jazyk: | English<br />French<br />Italian |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Le Matematiche, Vol 68, Iss 1, Pp 201-216 (2013) |
Druh dokumentu: | article |
ISSN: | 0373-3505 2037-5298 |
Popis: | This paper deals with the following class of nonlocal Schrödinger equations(-\Delta)^s u + u = |u|^{p-1}u in \mathbb{R}^N, for s\in (0,1).We prove existence and symmetry results for the solutions $u$ in the fractional Sobolev space H^s(\mathbb{R}^N). Our results are in clear accordance with those for the classical local counterpart, that is when s=1. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |