Advancing COVID-19 diagnostics: rapid detection of intact SARS-CoV-2 using viability RT-PCR assay

Autor: Judith M. J. Veugen, Tom Schoenmakers, Inge H. M. van Loo, Bart L. Haagmans, Mathie P. G. Leers, Mart M. Lamers, Mayk Lucchesi, Bas C. T. van Bussel, Walther N. K. A. van Mook, Rudy M. M. A. Nuijts, Paul H. M. Savelkoul, Mor M. Dickman, Petra F. G. Wolffs
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Microbiology Spectrum, Vol 12, Iss 9 (2024)
Druh dokumentu: article
ISSN: 2165-0497
DOI: 10.1128/spectrum.00160-24
Popis: ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Commonly used methods for both clinical diagnosis of SARS-CoV-2 infection and management of infected patients involve the detection of viral RNA, but the presence of infectious virus particles is unknown. Viability PCR (v-PCR) uses a photoreactive dye to bind non-infectious RNA, ideally resulting in the detection of RNA only from intact virions. This study aimed to develop and validate a rapid v-PCR assay for distinguishing intact and compromised SARS-CoV-2. Propidium monoazide (PMAxx) was used as a photoreactive dye. Mixtures with decreasing percentages of intact SARS-CoV-2 (from 100% to 0%) were prepared from SARS-CoV-2 virus stock and a clinical sample. Each sample was divided into a PMAxx-treated part and a non-PMAxx-treated part. Reverse transcription-PCR (RT-PCR) using an in-house developed SARS-CoV-2 viability assay was then applied to both sample sets. The difference in intact SARS-CoV-2 was determined by subtracting the cycle threshold (Ct) value of the PMAxx-treated sample from the non-PMAxx-treated sample. Mixtures with decreasing concentrations of intact SARS-CoV-2 showed increasingly lower delta Ct values as the percentage of intact SARS-CoV-2 decreased, as expected. This relationship was observed in both high and low viral load samples prepared from cultured SARS-CoV-2 virus stock, as well as for a clinical sample prepared directly from a SARS-CoV-2 positive nasopharyngeal swab. In this study, a rapid v-PCR assay has been validated that can distinguish intact from compromised SARS-CoV-2. The presence of intact virus particles, as determined by v-PCR, may indicate SARS-CoV-2 infectiousness.IMPORTANCEThis study developed a novel method that can help determine whether someone who has been diagnosed with coronavirus disease 2019 (COVID-19) is still capable of spreading the virus to others. Current tests only detect the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, but cannot tell whether the particles are still intact and can thus infect cells. The researchers used a dye that selectively blocks the detection of damaged virions and free RNA. They showed that this viability PCR reliably distinguishes intact SARS-CoV-2 capable of infecting from damaged SARS-CoV-2 or free RNA in both cultured virus samples and a clinical sample. Being able to quickly assess contagiousness has important implications for contact tracing and safely ending isolation precautions. This viability PCR technique provides a simple way to obtain valuable information, beyond just positive or negative test results, about the actual risk someone poses of transmitting SARS-CoV-2 through the air or surfaces they come into contact with.
Databáze: Directory of Open Access Journals