3D U-Net for automated detection of multiple sclerosis lesions: utility of transfer learning from other pathologies

Autor: Stephen G. Wahlig, Pierre Nedelec, David A. Weiss, Jeffrey D. Rudie, Leo P. Sugrue, Andreas M. Rauschecker
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Frontiers in Neuroscience, Vol 17 (2023)
Druh dokumentu: article
ISSN: 1662-453X
DOI: 10.3389/fnins.2023.1188336
Popis: Background and purposeDeep learning algorithms for segmentation of multiple sclerosis (MS) plaques generally require training on large datasets. This manuscript evaluates the effect of transfer learning from segmentation of another pathology to facilitate use of smaller MS-specific training datasets. That is, a model trained for detection of one type of pathology was re-trained to identify MS lesions and active demyelination.Materials and methodsIn this retrospective study using MRI exams from 149 patients spanning 4/18/2014 to 7/8/2021, 3D convolutional neural networks were trained with a variable number of manually-segmented MS studies. Models were trained for FLAIR lesion segmentation at a single timepoint, new FLAIR lesion segmentation comparing two timepoints, and enhancing (actively demyelinating) lesion segmentation on T1 post-contrast imaging. Models were trained either de-novo or fine-tuned with transfer learning applied to a pre-existing model initially trained on non-MS data. Performance was evaluated with lesionwise sensitivity and positive predictive value (PPV).ResultsFor single timepoint FLAIR lesion segmentation with 10 training studies, a fine-tuned model demonstrated improved performance [lesionwise sensitivity 0.55 ± 0.02 (mean ± standard error), PPV 0.66 ± 0.02] compared to a de-novo model (sensitivity 0.49 ± 0.02, p = 0.001; PPV 0.32 ± 0.02, p
Databáze: Directory of Open Access Journals