First Eigenvalues of Some Operators Under the Backward Ricci Flow on Bianchi Classes
Autor: | Shahroud Azami, Rawan Bossly, Abdul Haseeb, Abimbola Abolarinwa |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Mathematics, Vol 12, Iss 23, p 3846 (2024) |
Druh dokumentu: | article |
ISSN: | 12233846 2227-7390 |
DOI: | 10.3390/math12233846 |
Popis: | Let λ(t) be the first eigenvalue of the operator −∆+aRb on locally three-dimensional homogeneous manifolds along the backward Ricci flow, where a,b are real constants and R is the scalar curvature. In this paper, we study the properties of λ(t) on Bianchi classes. We begin by deriving an evolution equation for the quantity λ(t) on three-dimensional homogeneous manifolds in the context of the backward Ricci flow. Utilizing this equation, we subsequently establish a monotonic quantity that is contingent upon λ(t). Additionally, we present both upper and lower bounds for λ(t) within the framework of Bianchi classes. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |