Identifying chemically similar multiphase nanoprecipitates in compositionally complex non-equilibrium oxides via machine learning

Autor: Keyou S. Mao, Tyler J. Gerczak, Jason M. Harp, Casey S. McKinney, Timothy G. Lach, Omer Karakoc, Andrew T. Nelson, Kurt A. Terrani, Chad M. Parish, Philip D. Edmondson
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Communications Materials, Vol 3, Iss 1, Pp 1-13 (2022)
Druh dokumentu: article
ISSN: 2662-4443
DOI: 10.1038/s43246-022-00244-4
Popis: Characterizing fission products in uranium dioxide nuclear fuel is important for predicting its long-term properties. Here, machine learning is used to mine microscopy images of precipitates and nanoscale gas bubbles in high-burn-up fuels, providing detailed structural insight of nanoscale fission products.
Databáze: Directory of Open Access Journals