Autor: |
Keyou S. Mao, Tyler J. Gerczak, Jason M. Harp, Casey S. McKinney, Timothy G. Lach, Omer Karakoc, Andrew T. Nelson, Kurt A. Terrani, Chad M. Parish, Philip D. Edmondson |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Communications Materials, Vol 3, Iss 1, Pp 1-13 (2022) |
Druh dokumentu: |
article |
ISSN: |
2662-4443 |
DOI: |
10.1038/s43246-022-00244-4 |
Popis: |
Characterizing fission products in uranium dioxide nuclear fuel is important for predicting its long-term properties. Here, machine learning is used to mine microscopy images of precipitates and nanoscale gas bubbles in high-burn-up fuels, providing detailed structural insight of nanoscale fission products. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|