Autor: |
Zuoxun Huang, Junfeng Li, Xiaohu Chen, Qing Yang, Xiyang Zeng, Ruqing Bai, Li Wang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Polymers, Vol 15, Iss 2, p 381 (2023) |
Druh dokumentu: |
article |
ISSN: |
2073-4360 |
DOI: |
10.3390/polym15020381 |
Popis: |
Biodegradable scaffolds with photothermal effects and customizable pore structures are a hot topic of research in the field of bone repair. In this study, we prepared porous scaffolds using poly(lactic acid) (PLA) as the raw material and customized the pore structure with 3D printing technology. First, we investigated the effect of pore structure on the mechanical properties of this 3D PLA scaffold. Subsequently, the optimally designed PLA scaffolds were coated with PDA to enhance their hydrophilicity and bioactivity. XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy) and EDS (Energy dispersive spectroscopy) results indicated that PDA was successfully coated on the surface of PLA scaffolds. SEM (Scanning electron microscopy) micrographs showed that the surface of the PDA/PLA scaffolds became rough. WCA (water contact angle) confirmed that the material has enhanced hydrophilic properties. PDA/PLA scaffolds exhibit a tunable photothermal effect under NIR (near infrared) irradiation. The 3D-printed PLA/PDA scaffolds have remarkable potential as an alternative material for repairing bone defects. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|