Autor: |
Mohd Bilal, Vindhyachal Singh Yadav, Abhinav Verma, Rajendra Prasad, Abdul Haseeb |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Universal Journal of Mathematics and Applications, Vol 7, Iss 3, Pp 102-110 (2024) |
Druh dokumentu: |
article |
ISSN: |
2619-9653 |
DOI: |
10.32323/ujma.1443527 |
Popis: |
For a Lorentzian para-Kenmotsu manifold of dimension $m$ (briefly, ${(LPK)_{m}}$) admitting Bach almost soliton $(g,\zeta,\lambda)$, we explored the characteristics of the norm of Ricci operator. Besides, we gave the necessary condition for ${(LPK)_{m}}$ ($m\geq 4$) admitting Bach almost soliton to be an $\eta$-Einstein manifold. Afterwards, we proved that Bach almost solitons are always steady when a Lorentzian para-Kenmotsu manifold of dimension three has Bach almost soliton. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|