LP-Kenmotsu Manifolds Admitting Bach Almost Solitons

Autor: Mohd Bilal, Vindhyachal Singh Yadav, Abhinav Verma, Rajendra Prasad, Abdul Haseeb
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Universal Journal of Mathematics and Applications, Vol 7, Iss 3, Pp 102-110 (2024)
Druh dokumentu: article
ISSN: 2619-9653
DOI: 10.32323/ujma.1443527
Popis: For a Lorentzian para-Kenmotsu manifold of dimension $m$ (briefly, ${(LPK)_{m}}$) admitting Bach almost soliton $(g,\zeta,\lambda)$, we explored the characteristics of the norm of Ricci operator. Besides, we gave the necessary condition for ${(LPK)_{m}}$ ($m\geq 4$) admitting Bach almost soliton to be an $\eta$-Einstein manifold. Afterwards, we proved that Bach almost solitons are always steady when a Lorentzian para-Kenmotsu manifold of dimension three has Bach almost soliton.
Databáze: Directory of Open Access Journals