Autor: |
Xuejuan Wu, Ning Zhou, Yang Chen, Jiasong Sun, Linpeng Lu, Qian Chen, Chao Zuo |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Light: Science & Applications, Vol 13, Iss 1, Pp 1-16 (2024) |
Druh dokumentu: |
article |
ISSN: |
2047-7538 |
DOI: |
10.1038/s41377-024-01568-1 |
Popis: |
Abstract Lens-free on-chip microscopy is a powerful and promising high-throughput computational microscopy technique due to its unique advantage of creating high-resolution images across the full field-of-view (FOV) of the imaging sensor. Nevertheless, most current lens-free microscopy methods have been designed for imaging only two-dimensional thin samples. Lens-free on-chip tomography (LFOCT) with a uniform resolution across the entire FOV and at a subpixel level remains a critical challenge. In this paper, we demonstrated a new LFOCT technique and associated imaging platform based on wavelength scanning Fourier ptychographic diffraction tomography (wsFPDT). Instead of using angularly-variable illuminations, in wsFPDT, the sample is illuminated by on-axis wavelength-variable illuminations, ranging from 430 to 1200 nm. The corresponding under-sampled diffraction patterns are recorded, and then an iterative ptychographic reconstruction procedure is applied to fill the spectrum of the three-dimensional (3D) scattering potential to recover the sample’s 3D refractive index (RI) distribution. The wavelength-scanning scheme not only eliminates the need for mechanical motion during image acquisition and precise registration of the raw images but secures a quasi-uniform, pixel-super-resolved imaging resolution across the entire imaging FOV. With wsFPDT, we demonstrate the high-throughput, billion-voxel 3D tomographic imaging results with a half-pitch lateral resolution of 775 nm and an axial resolution of 5.43 μm across a large FOV of 29.85 mm2 and an imaging depth of >200 μm. The effectiveness of the proposed method was demonstrated by imaging various types of samples, including micro-polystyrene beads, diatoms, and mouse mononuclear macrophage cells. The unique capability to reveal quantitative morphological properties, such as area, volume, and sphericity index of single cell over large cell populations makes wsFPDT a powerful quantitative and label-free tool for high-throughput biological applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|