Autor: |
Charlotte Clément, Philippe Martinez, Qiuzhen Yin, Steven Clemens, Kaustubh Thirumalai, Srinivasan Prasad, Krishnamurthy Anupama, Qianqian Su, Anqi Lyu, Antoine Grémare, Stéphanie Desprat |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Communications Earth & Environment, Vol 5, Iss 1, Pp 1-12 (2024) |
Druh dokumentu: |
article |
ISSN: |
2662-4435 |
DOI: |
10.1038/s43247-024-01781-1 |
Popis: |
Abstract While it is accepted that the tropical hydrological cycle has intensified during past interglacial periods due to changes in insolation, greenhouse gases and ice volume, their respective influences are uncertain. Here we present a pollen record from Bengal Bay to reconstruct vegetation changes in India’s core monsoon zone during two warm periods, the current and last interglacial, comparing the data with numerical model simulations to assess the influence of different forcing mechanisms. Results show tropical forest expansion between 11.7-5 ka and 127-120 ka, defining two Indian humid periods, with the last interglacial showing the strongest monsoon activity, consistent with salinity reconstructions. Model-data comparison highlights boreal summer insolation as the primary driver of vegetation dynamics and monsoon intensity during interglacial periods, with CO2 and ice-sheets having a limited effect. Vegetation remains unaffected by pre-industrial CO2 variations above 250 ppmv, a threshold value that characterizes most interglacials of the last million years. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|