Strain and crystallographic identification of the helically concaved gap surfaces of chiral nanoparticles

Autor: Sungwook Choi, Sang Won Im, Ji-Hyeok Huh, Sungwon Kim, Jaeseung Kim, Yae-Chan Lim, Ryeong Myeong Kim, Jeong Hyun Han, Hyeohn Kim, Michael Sprung, Su Yong Lee, Wonsuk Cha, Ross Harder, Seungwoo Lee, Ki Tae Nam, Hyunjung Kim
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Nature Communications, Vol 14, Iss 1, Pp 1-10 (2023)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-023-39255-1
Popis: Abstract Identifying the three-dimensional (3D) crystal plane and strain-field distributions of nanocrystals is essential for optical, catalytic, and electronic applications. However, it remains a challenge to image concave surfaces of nanoparticles. Here, we develop a methodology for visualizing the 3D information of chiral gold nanoparticles ≈ 200 nm in size with concave gap structures by Bragg coherent X-ray diffraction imaging. The distribution of the high-Miller-index planes constituting the concave chiral gap is precisely determined. The highly strained region adjacent to the chiral gaps is resolved, which was correlated to the 432-symmetric morphology of the nanoparticles and its corresponding plasmonic properties are numerically predicted from the atomically defined structures. This approach can serve as a comprehensive characterization platform for visualizing the 3D crystallographic and strain distributions of nanoparticles with a few hundred nanometers, especially for applications where structural complexity and local heterogeneity are major determinants, as exemplified in plasmonics.
Databáze: Directory of Open Access Journals