An Optical MEMS Acoustic Sensor Based on Grating Interferometer

Autor: Mengying Zhang, Gaomi Wu, Dipeng Ren, Ran Gao, Zhi-Mei Qi, Xingdong Liang
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Sensors, Vol 19, Iss 7, p 1503 (2019)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s19071503
Popis: Acoustic detection is of great significance because of its wide applications. This paper reports a Micro-Electro-Mechanical System (MEMS) acoustic sensor based on grating interferometer. In the MEMS structure, a diaphragm and a micro-grating made up the interference cavity. A short-cavity structure was designed and fabricated to reduce the impact of temperature on the cavity length in order to improve its stability against environment temperature variations. Besides this, through holes were designed in the substrate of the grating to reduce the air damping of the short-cavity structure. A silicon diaphragm with a 16.919 µm deep cavity and 2.4 µm period grating were fabricated by an improved MEMS process. The fabricated sensor chip was packaged on a conditioning circuit with a laser diode and a photodetector for acoustic detection. The output voltage signal in response to an acoustic wave is of high quality. The sensitivity of the acoustic sensor is up to −15.14 dB re 1 V/Pa @ 1 kHz. The output signal of the high-stability acoustic sensor almost unchanged as the environment temperature ranged from 5 °C to 55 °C.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje