Autor: |
Alexia Comte, Tom Gräfenhan, Matthew G Links, Sean M Hemmingsen, Tim J Dumonceaux |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 12, Iss 3, p e0173495 (2017) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0173495 |
Popis: |
We examined the epiphytic microbiome of cereal grain using the universal barcode chaperonin-60 (cpn60). Microbial community profiling of seed washes containing DNA extracts prepared from field-grown cereal grain detected sequences from a fungus identified only to Class Sordariomycetes. To identify the fungal sequence and to improve the reference database, we determined cpn60 sequences from field-collected and reference strains of the ergot fungus, Claviceps purpurea. These data allowed us to identify this fungal sequence as deriving from C. purpurea, and suggested that C. purpurea DNA is readily detectable on agricultural commodities, including those for which ergot was not identified as a grading factor. To get a sense of the prevalence and level of C. purpurea DNA in cereal grains, we developed a quantitative PCR assay based on the fungal internal transcribed spacer (ITS) and applied it to 137 samples from the 2014 crop year. The amount of Claviceps DNA quantified correlated strongly with the proportion of ergot sclerotia identified in each grain lot, although there was evidence that non-target organisms were responsible for some false positives with the ITS-based assay. We therefore developed a cpn60-targeted loop-mediated isothermal amplification assay and applied it to the same grain wash samples. The time to positive displayed a significant, inverse correlation to ergot levels determined by visual ratings. These results indicate that both laboratory-based and field-adaptable molecular diagnostic assays can be used to detect and quantify pathogen load in bulk commodities using cereal grain washes. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|