Designing Highly Efficient Cu2O-CuO Heterojunction CO Oxidation Catalysts: The Roles of the Support Type and Cu2O-CuO Interface Effect

Autor: Fen Zhao, Yiyu Shi, Leilei Xu, Mindong Chen, Yingying Xue, Cai-E Wu, Jian Qiu, Ge Cheng, Jingxin Xu, Xun Hu
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nanomaterials, Vol 12, Iss 17, p 3020 (2022)
Druh dokumentu: article
ISSN: 2079-4991
DOI: 10.3390/nano12173020
Popis: In this work, a series of Cu2O/S (S = α-MnO2, CeO2, ZSM-5, and Fe2O3) supported catalysts with a Cu2O loading amount of 15% were prepared by the facile liquid-phase reduction deposition–precipitation strategy and investigated as CO oxidation catalysts. It was found that the Cu2O/α-MnO2 catalyst exhibits the best catalytic activity for CO oxidation. Additionally, a series of Cu2O-CuO/α-MnO2 heterojunctions with varied proportion of Cu+/Cu2+ were synthesized by further calcining the pristine Cu2O/α-MnO2 catalyst. The ratio of the Cu+/Cu2+ could be facilely regulated by controlling the calcination temperature. It is worth noting that the Cu2O-CuO/α-MnO2-260 catalyst displays the best catalytic performance. Moreover, the kinetic studies manifest that the apparent activation energy could be greatly reduced owing to the excellent redox property and the Cu2O-CuO interface effect. Therefore, the Cu2O-CuO heterojunction catalysts supported on α-MnO2 nanotubes are believed to be the potential catalyst candidates for CO oxidation with advanced performance.
Databáze: Directory of Open Access Journals