IDENTIFICATION PROPERTIES ENHANCEMENT ALGORITHM FOR PROBLEMS OF PARAMETERS ESTIMATION OF LINEAR REGRESSION MODEL
Autor: | S. V. Aranovskiy, A. A. Bobtsov, J. . Wang, N. A. Nikolaev, A. A. Pyrkin |
---|---|
Jazyk: | English<br />Russian |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki, Vol 16, Iss 3, Pp 565-567 (2016) |
Druh dokumentu: | article |
ISSN: | 2226-1494 2500-0373 |
DOI: | 10.17586/2226-1494-2016-16-3-565-567 |
Popis: | This brief paper describes a new approach to identification of unknown constant parameters for a linear regression model. The main idea of the method lies in transformation of initial model into a new kind one. The new model regressor possesses identification properties or meets persistency of excitation conditions. An example of two unknown parameters identification for the linear regression model shows efficiency of the proposed approach. Simulation was carried out for a regressor with no persistency of excitation conditions, hence, parameter identification is not guaranteed. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |