Autor: |
Haozhi Wang, Yuntao Shi, Wei Guo |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Information, Vol 15, Iss 7, p 375 (2024) |
Druh dokumentu: |
article |
ISSN: |
2078-2489 |
DOI: |
10.3390/info15070375 |
Popis: |
Low-current grounding systems are the main grounding method used in power distribution networks and belong to non-direct grounding systems. The most common fault in this type of system is a single-phase grounding fault, which may cause electrical fires and endanger personal safety. Due to the difficulty of troubleshooting, the selection of fault lines in low-current grounding systems has always been an important research topic in power system relay protection. This study proposes a new approach for fault identification of power lines based on the Euler transformation and deep learning. Firstly, the current signals of the distribution network are rapidly Fourier-transformed to obtain their frequencies for constructing reference signals. Then, the current signals are combined with the reference signals and transformed into images using Euler transformation in the complex plane. The images are then classified using a residual network model. The convolutional neural network in the model can automatically extract fault feature vectors, thus achieving the identification of faulty lines. The simulation was conducted based on the existing model, and extensive data training and testing were performed. The experimental results show that this method has good stability, fast convergence speed, and high accuracy. This technology can effectively accomplish fault identification in power distribution networks. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|