Autor: |
Laura Esbrí, Tomeu Rigo, María Carmen Llasat, Riccardo Biondi, Stefano Federico, Olga Gluchshenko, Markus Kerschbaum, Martina Lagasio, Vincenzo Mazzarella, Massimo Milelli, Antonio Parodi, Eugenio Realini, Marco-Michael Temme |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Atmosphere, Vol 14, Iss 8, p 1238 (2023) |
Druh dokumentu: |
article |
ISSN: |
2073-4433 |
DOI: |
10.3390/atmos14081238 |
Popis: |
Effective and time-efficient aircraft assistance and guidance in severe weather environments remains a challenge for air traffic control. Air navigation service providers around the globe could greatly benefit from specific and adapted meteorological information for the controller position, helping to reduce the increased workload induced by adverse weather. The present work proposes a radar-based nowcasting algorithm providing compact meteorological information on convective weather near airports for introduction into the algorithms intended to assist in air-traffic management. The use of vertically integrated liquid density enables extremely rapid identification and short-term prediction of convective regions that should not be traversed by aircraft, which is an essential requirement for use in tactical controller support systems. The proposed tracking and nowcasting method facilitates the anticipation of the meteorological situation around an airport. Nowcasts of centroid locations of various approaching thunderstorms were compared with corresponding radar data, and centroid distances between nowcasted and observed storms were computed. The results were analyzed with Method for the Object-Based Evaluation from the Model Evaluation tools software (MET-10.0.1, Developmental Testbed Center, Boulder, CO, US) and later integrated into an assistance arrival manager software, showing the potential of this approach for automatic air traffic assistance in adverse weather scenarios. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|