Autor: |
Thi Ngoc Anh Tran, Jin-Sung Son, Muhammad Awais, Jae-Heung Ko, Deok Chun Yang, Seok-Kyu Jung |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Bioengineering, Vol 10, Iss 4, p 484 (2023) |
Druh dokumentu: |
article |
ISSN: |
2306-5354 |
DOI: |
10.3390/bioengineering10040484 |
Popis: |
Ginsenosides are a group of bioactive compounds isolated from Panax ginseng. Conventional major ginsenosides have a long history of use in traditional medicine for both illness prevention and therapy. Bioconversion processes have the potential to create new and valuable products in pharmaceutical and biological activities, making them both critical for research and highly economic to implement. This has led to an increase in the number of studies that use major ginsenosides as a precursor to generate minor ones using β-glucosidase. Minor ginsenosides may also have useful properties but are difficult to isolate from raw ginseng because of their scarcity. Bioconversion processes have the potential to create novel minor ginsenosides from the more abundant major ginsenoside precursors in a cost-effective manner. While numerous bioconversion techniques have been developed, an increasing number of studies have reported that β-glucosidase can effectively and specifically generate minor ginsenosides. This paper summarizes the probable bioconversion mechanisms of two protopanaxadiol (PPD) and protopanaxatriol (PPT) types. Other high-efficiency and high-value bioconversion processes using complete proteins isolated from bacterial biomass or recombinant enzymes are also discussed in this article. This paper also discusses the various conversion and analysis methods and their potential applications. Overall, this paper offers theoretical and technical foundations for future studies that will be both scientifically and economically significant. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|