Autor: |
Hiroaki Ito, Takashi Matsui, Ryo Konno, Makoto Itakura, Yoshio Kodera |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-021-02899-4 |
Popis: |
Abstract Recent mass spectrometry (MS)-based techniques enable deep proteome coverage with relative quantitative analysis, resulting in increased identification of very weak signals accompanied by increased data size of liquid chromatography (LC)–MS/MS spectra. However, the identification of weak signals using an assignment strategy with poorer performance results in imperfect quantification with misidentification of peaks and ratio distortions. Manually annotating a large number of signals within a very large dataset is not a realistic approach. In this study, therefore, we utilized machine learning algorithms to successfully extract a higher number of peptide peaks with high accuracy and precision. Our strategy evaluated each peak identified using six different algorithms; peptide peaks identified by all six algorithms (i.e., unanimously selected) were subsequently assigned as true peaks, which resulted in a reduction in the false-positive rate. Hence, exact and highly quantitative peptide peaks were obtained, providing better performance than obtained applying the conventional criteria or using a single machine learning algorithm. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|