Exploring Soliton Solutions and Chaotic Dynamics in the (3+1)-Dimensional Wazwaz–Benjamin–Bona–Mahony Equation: A Generalized Rational Exponential Function Approach

Autor: Amjad E. Hamza, Muntasir Suhail, Amer Alsulami, Alaa Mustafa, Khaled Aldwoah, Hicham Saber
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Fractal and Fractional, Vol 8, Iss 10, p 592 (2024)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract8100592
Popis: This paper investigates the explicit, accurate soliton and dynamic strategies in the resolution of the Wazwaz–Benjamin–Bona–Mahony (WBBM) equations. By exploiting the ensuing wave events, these equations find applications in fluid dynamics, ocean engineering, water wave mechanics, and scientific inquiry. The two main goals of the study are as follows: Firstly, using the dynamic perspective, examine the chaos, bifurcation, Lyapunov spectrum, Poincaré section, return map, power spectrum, sensitivity, fractal dimension, and other properties of the governing equation. Secondly, we use a generalized rational exponential function (GREF) technique to provide a large number of analytical solutions to nonlinear partial differential equations (NLPDEs) that have periodic, trigonometric, and hyperbolic properties. We examining the wave phenomena using 2D and 3D diagrams along with a projection of contour plots. Through the use of the computational program Mathematica, the research confirms the computed solutions to the WBBM equations.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje