Autor: |
Toon Bogaerts, Sylvain Watelet, Niko De Bruyne, Chris Thoen, Tom Coopman, Joris Van den Bergh, Maarten Reyniers, Dirck Seynaeve, Wim Casteels, Steven Latré, Peter Hellinckx |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Sensors, Vol 22, Iss 7, p 2732 (2022) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s22072732 |
Popis: |
Road weather conditions such as ice, snow, or heavy rain can have a significant impact on driver safety. In this paper, we present an approach to continuously monitor the road conditions in real time by equipping a fleet of vehicles with sensors. Based on the observed conditions, a physical road weather model is used to forecast the conditions for the following hours. This can be used to deliver timely warnings to drivers about potentially dangerous road conditions. To optimally process the large data volumes, we show how artificial intelligence is used to (1) calibrate the sensor measurements and (2) to retrieve relevant weather information from camera images. The output of the road weather model is compared to forecasts at road weather station locations to validate the approach. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|