Reliable Delay Based Algorithm to Boost PUF Security Against Modeling Attacks

Autor: Fathi Amsaad, Mohammed Niamat, Amer Dawoud, Selcuk Kose
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Information, Vol 9, Iss 9, p 224 (2018)
Druh dokumentu: article
ISSN: 2078-2489
DOI: 10.3390/info9090224
Popis: Silicon Physical Unclonable Functions (sPUFs) are one of the security primitives and state-of-the-art topics in hardware-oriented security and trust research. This paper presents an efficient and dynamic ring oscillator PUFs (d-ROPUFs) technique to improve sPUFs security against modeling attacks. In addition to enhancing the Entropy of weak ROPUF design, experimental results show that the proposed d-ROPUF technique allows the generation of larger and updated challenge-response pairs (CRP space) compared with simple ROPUF. Additionally, an innovative hardware-oriented security algorithm, namely, the Optimal Time Delay Algorithm (OTDA), is proposed. It is demonstrated that the OTDA algorithm significantly improves PUF reliability under varying operating conditions. Further, it is shown that the OTDA further efficiently enhances the d-ROPUF capability to generate a considerably large set of reliable secret keys to protect the PUF structure from new cyber-attacks, including machine learning and modeling attacks.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje