The number of distinct distances from a vertex of a convex polygon

Autor: Gabriel Nivasch, János Pach, Rom Pinchasi, Shira Zerbib
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Journal of Computational Geometry, Vol 4, Iss 1 (2013)
Druh dokumentu: article
ISSN: 1920-180X
DOI: 10.20382/jocg.v4i1a1
Popis: Erdős conjectured in 1946 that every $n$-point set $P$ in convex position in the plane contains a point that determines at least $\lfloor n/2\rfloor$ distinct distances to the other points of $P$. The best known lower bound due to Dumitrescu (2006) is $13n/36 − O(1)$. In the present note, we slightly improve on this result to $(13/36 + \varepsilon)n − O(1)$ for $\varepsilon \approx 1/23000$. Our main ingredient is an improved bound on the maximum number of isosceles triangles determined by $P$.
Databáze: Directory of Open Access Journals