Autor: |
Peiyu Zong, Wenpeng Deng, Jian Liu, Jue Ruan |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
GigaByte (2024) |
Druh dokumentu: |
article |
ISSN: |
2709-4715 |
DOI: |
10.46471/gigabyte.141 |
Popis: |
The rapid advancements in sequencing length necessitate the adoption of increasingly efficient sequence alignment algorithms. The Needleman–Wunsch method introduces the foundational dynamic-programming matrix calculation for global alignment, which evaluates the overall alignment of sequences. However, this method is known to be highly time-consuming. The proposed TSTA algorithm leverages both vector-level and thread-level parallelism to accelerate pairwise and multiple sequence alignments. Availability and implementation Source codes are available at https://github.com/bxskdh/TSTA. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|