Autor: |
Kanovei Vladimir, Katz Mikhail G., Nowik Tahl |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Open Mathematics, Vol 18, Iss 1, Pp 162-166 (2020) |
Druh dokumentu: |
article |
ISSN: |
2391-5455 |
DOI: |
10.1515/math-2020-0017 |
Popis: |
We show that the metric universal cover of a plane with a puncture yields an example of a nonstandard hull properly containing the metric completion of a metric space. As mentioned by Do Carmo, a nonextendible Riemannian manifold can be noncomplete, but in the broader category of metric spaces it becomes extendible. We give a short proof of a characterisation of the Heine-Borel property of the metric completion of a metric space M in terms of the absence of inapproachable finite points in ∗M. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|