Metric completions, the Heine-Borel property, and approachability

Autor: Kanovei Vladimir, Katz Mikhail G., Nowik Tahl
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Open Mathematics, Vol 18, Iss 1, Pp 162-166 (2020)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2020-0017
Popis: We show that the metric universal cover of a plane with a puncture yields an example of a nonstandard hull properly containing the metric completion of a metric space. As mentioned by Do Carmo, a nonextendible Riemannian manifold can be noncomplete, but in the broader category of metric spaces it becomes extendible. We give a short proof of a characterisation of the Heine-Borel property of the metric completion of a metric space M in terms of the absence of inapproachable finite points in ∗M.
Databáze: Directory of Open Access Journals