Autor: |
Abubakar Adamu, Poom Kumam, Duangkamon Kitkuan, Anantachai Padcharoen |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Fixed Point Theory and Algorithms for Sciences and Engineering, Vol 2023, Iss 1, Pp 1-23 (2023) |
Druh dokumentu: |
article |
ISSN: |
2730-5422 |
DOI: |
10.1186/s13663-023-00741-2 |
Popis: |
Abstract In this paper, a Halpern–Tseng-type algorithm for approximating zeros of the sum of two monotone operators whose zeros are J-fixed points of relatively J-nonexpansive mappings is introduced and studied. A strong convergence theorem is established in Banach spaces that are uniformly smooth and 2-uniformly convex. Furthermore, applications of the theorem to convex minimization and image-restoration problems are presented. In addition, the proposed algorithm is used in solving some classical image-recovery problems and a numerical example in a Banach space is presented to support the main theorem. Finally, the performance of the proposed algorithm is compared with that of some existing algorithms in the literature. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|