Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays.

Autor: Ahmed M Metwaly, Esmail M El-Fakharany, Aisha A Alsfouk, Ibrahim M Ibrahim, Eslam B Elkaeed, Ibrahim H Eissa
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: PLoS ONE, Vol 19, Iss 12, p e0312866 (2024)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0312866
Popis: To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. These simulations gave detailed insights into the binding interactions of Quercetin with RdRp compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin's binding. Principal component analysis of trajectories (PCAT) provided insights into the coordinated movements within the systems studied. In vitro assays showed that Quercetin is highly effective in inhibiting RdRp, with an IC50 of 122.1 ±5.46 nM, which is better than Remdesivir's IC50 of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy against SARS-CoV-2 In vitro, with an IC50 of 1.149 μg/ml compared to Remdesivir's 9.54 μg/ml. The selectivity index (SI) values highlighted Quercetin's safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our comprehensive study suggests that Quercetin is a promising candidate for further research as an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective anti-COVID-19 treatment.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje