Parameter identifiability of a within-host SARS-CoV-2 epidemic model

Autor: Junyuan Yang, Sijin Wu, Xuezhi Li, Xiaoyan Wang, Xue-Song Zhang, Lu Hou
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Infectious Disease Modelling, Vol 9, Iss 3, Pp 975-994 (2024)
Druh dokumentu: article
ISSN: 2468-0427
DOI: 10.1016/j.idm.2024.05.004
Popis: Parameter identification involves the estimation of undisclosed parameters within a system based on observed data and mathematical models. In this investigation, we employ DAISY to meticulously examine the structural identifiability of parameters of a within-host SARS-CoV-2 epidemic model, taking into account an array of observable datasets. Furthermore, Monte Carlo simulations are performed to offer a comprehensive practical analysis of model parameters. Lastly, sensitivity analysis is employed to ascertain that decreasing the replication rate of the SARS-CoV-2 virus and curbing the infectious period are the most efficacious measures in alleviating the dissemination of COVID-19 amongst hosts.
Databáze: Directory of Open Access Journals