Autor: |
Junyuan Yang, Sijin Wu, Xuezhi Li, Xiaoyan Wang, Xue-Song Zhang, Lu Hou |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Infectious Disease Modelling, Vol 9, Iss 3, Pp 975-994 (2024) |
Druh dokumentu: |
article |
ISSN: |
2468-0427 |
DOI: |
10.1016/j.idm.2024.05.004 |
Popis: |
Parameter identification involves the estimation of undisclosed parameters within a system based on observed data and mathematical models. In this investigation, we employ DAISY to meticulously examine the structural identifiability of parameters of a within-host SARS-CoV-2 epidemic model, taking into account an array of observable datasets. Furthermore, Monte Carlo simulations are performed to offer a comprehensive practical analysis of model parameters. Lastly, sensitivity analysis is employed to ascertain that decreasing the replication rate of the SARS-CoV-2 virus and curbing the infectious period are the most efficacious measures in alleviating the dissemination of COVID-19 amongst hosts. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|