Autor: |
Jung Yoog Kang, Cheon Seoung Ryoo |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 9, Iss 6, Pp 16753-16772 (2024) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2024812?viewType=HTML |
Popis: |
In this study, we introduced several types of higher-order difference equations involving $ q $-SINE Euler (QSE) and $ q $-COSINE Euler (QCE) polynomials. Depending on the parameters selected, these higher-order difference equations exhibited properties of trigonometric functions or related Euler numbers. Approximate root construction focused on the QSE polynomial, which was the solution of the $ q $-difference equations obtained earlier. We also showed the structure of the approximate roots of higher-order polynomials among the QSE polynomials, understood them, and considered the associated conjectures. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|