Autor: |
Qijia Yu, Jingmin Wang, Chuanxin Liang, Jiaxi Meng, Jinyue Xu, Yang Liu, Shiteng Zhao, Xuekui Xi, Chuanying Xi, Ming Yang, Chen Si, Yangkun He, Dong Wang, Chengbao Jiang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Advanced Science, Vol 11, Iss 25, Pp n/a-n/a (2024) |
Druh dokumentu: |
article |
ISSN: |
2198-3844 |
DOI: |
10.1002/advs.202401234 |
Popis: |
Abstract Elasticity, featured by a recoverable strain, refers to the ability that materials can return to their original shapes after deformation. Typically, the elastic strains of most metals are well‐known 0.2%. In shape memory alloys and high entropy alloys, the elastic strains can be several percent, as called superelasticity, which are all triggered by external stresses. A superelasticity induced by magnetic field, termed as magneto‐superelasticity, is extremely important for contactless work of materials and for developing brand‐new large stroke actuators and high efficiency energy transducers. In magnetic shape memory alloys, the twin boundary motion driven by magnetic field can output a strain of several percent. However, this strain is unrecoverable when removing the magnetic field and hence it is not magneto‐superelasticity. Here, a giant magneto‐superelasticity of 5% in a Ni34Co8Cu8Mn36Ga14 single crystal is reported by introducing arrays of ordered dislocations to form preferentially oriented martensitic variants during the magnetically induced reverse martensitic transformation. This work provides an opportunity to achieve high performance in functional materials by defect engineering. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|