Maximizing Anhydrosugar Production from Fast Pyrolysis of Eucalyptus Using Sulfuric Acid as an Ash Catalyst Inhibitor

Autor: Dongyan Zhang, Yuyang Fan, Anqing Zheng, Zengli Zhao, Fengyun Wang, Haibin Li
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Catalysts, Vol 8, Iss 12, p 609 (2018)
Druh dokumentu: article
ISSN: 2073-4344
DOI: 10.3390/catal8120609
Popis: Anhydrosugars, such as levoglucosan (LG), are high value-added chemicals which are mainly derived from fast pyrolysis of pure cellulose. However, fast pyrolysis of raw lignocellulosic biomass usually produces a very low amount of levoglucosan, since alkali and alkaline earth metals (AAEM) present in the ash can serve as the catalysts to inhibit the formation of levoglucosan through accelerating the pyranose ring-opening reactions. In this study, eucalyptus was impregnated with H2SO4 solutions with varying concentrations (0.25⁻1.25%). The characteristics of ash derived from raw and H2SO4-impregnated eucalyptus were characterized by X-ray fluorescence spectroscopy (XRF) and X-ray diffraction (XRD). The pyrolysis behaviors of raw and H2SO4-impregnated eucalyptus were performed on the thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). TG analysis demonstrated that the H2SO4-impregnated eucalyptus produced less char than raw eucalyptus. Py-GC/MS analysis showed that even small amounts of H2SO4 can obviously improve the production of anhydrosugars and phenols and suppressed the formation of carboxylic acids, aldehydes, and ketones from fast pyrolysis of eucalyptus. The rank order of levoglucosan yield from raw and impregnated eucalyptus was raw < 1.25% H2SO4 < 1% H2SO4 < 0.75% H2SO4 < 0.25% H2SO4 < 0.5% H2SO4. The maximum yield of levoglucosan (21.3%) was obtained by fast pyrolysis of eucalyptus impregnated with 0.5% H2SO4, which was close to its theoretical yield based on the cellulose content. The results could be ascribed to that H2SO4 can react with AAEM (e.g., Na, K, Ca, and Mg) and lignin to form lignosulfonate, thus acting as an inhibitor to suppress the catalytic effects of AAEM during fast pyrolysis of eucalyptus.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje